Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Med Chem ; 65(4): 2827-2835, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1366783

RESUMEN

The receptor recognition of the novel coronavirus SARS-CoV-2 relies on the "down-to-up" conformational change in the receptor-binding domain (RBD) of the spike (S) protein. Therefore, understanding the process of this change at the molecular level facilitates the design of therapeutic agents. With the help of coarse-grained molecular dynamic simulations, we provide evidence showing that the conformational dynamics of the S protein are globally cooperative. Importantly, an allosteric path was discovered that correlates the motion of the RBD with the motion of the junction between the subdomain 1 (SD1) and the subdomain 2 (SD2) of the S protein. Building on this finding, we designed non-RBD binding modulators to inhibit SARS-CoV-2 by prohibiting the conformational change of the S protein. Their inhibition effect and function stages at inhibiting SARS-CoV-2 were evaluated experimentally. In summary, our studies establish a molecular basis for future therapeutic agent design through allosteric effects.


Asunto(s)
Antivirales/farmacología , Simulación de Dinámica Molecular , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/química , Células Cultivadas , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , SARS-CoV-2/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
2.
Angew Chem Int Ed Engl ; 60(33): 18231-18239, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1303235

RESUMEN

Protein crystallography (PX) is widely used to drive advanced stages of drug optimization or to discover medicinal chemistry starting points by fragment soaking. However, recent progress in PX could allow for a more integrated role into early drug discovery. Here, we demonstrate for the first time the interplay of high throughput synthesis and high throughput PX. We describe a practical multicomponent reaction approach to acrylamides and -esters from diverse building blocks suitable for mmol scale synthesis on 96-well format and on a high-throughput nanoscale format in a highly automated fashion. High-throughput PX of our libraries efficiently yielded potent covalent inhibitors of the main protease of the COVID-19 causing agent, SARS-CoV-2. Our results demonstrate, that the marriage of in situ HT synthesis of (covalent) libraires and HT PX has the potential to accelerate hit finding and to provide meaningful strategies for medicinal chemistry projects.


Asunto(s)
Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Acrilamidas/síntesis química , Acrilamidas/metabolismo , Acrilatos/síntesis química , Acrilatos/metabolismo , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/síntesis química , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Unión Proteica , SARS-CoV-2/química , Bibliotecas de Moléculas Pequeñas/síntesis química
3.
Bioorg Chem ; 114: 105139, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1292618

RESUMEN

A series of scaffolds namely aurones, 3-indolinones, 4-quinolones and cinnamic acid-piperazine hybrids, was designed, synthesized and investigated in vitro against influenza A/H1N1pdm09 virus. Designed molecules adopted different binding mode i.e., in 430-cavity of neuraminidase, unlike sialic acid and oseltamivir in molecular docking studies. All molecules reduced the viral titer and exhibited non-cytotoxicity along with cryo-protective property towards MDCK cells. Molecules (Z)-2-(3'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2f), (Z)-2-(4'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2g) and 2-(2'-Methoxy-phenyl)-1H-quinolin-4-one (3a) were the most interesting molecules identified in this research, endowed with robust potencies showing low-nanomolar EC50 values of 4.0 nM, 6.7 nM and 4.9 nM, respectively, compared to reference competitive and non-competitive inhibitors: oseltamivir (EC50 = 12.7 nM) and quercetin (EC50 = 0.56 µM), respectively. Besides, 2f, 2g and 3a exhibited good neuraminidase inhibitory activity in sub-micromolar range (IC50 = 0.52 µM, 3.5 µM, 1.3 µM respectively). Moreover, these molecules were determined as non-competitive inhibitors similar to reference non-competitive inhibitor quercetin unlike reference competitive inhibitor oseltamivir in kinetics studies.


Asunto(s)
Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
4.
Biochemistry ; 60(13): 999-1018, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: covidwho-889110

RESUMEN

Carbohydrate-receptor interactions are often involved in the docking of viruses to host cells, and this docking is a necessary step in the virus life cycle that precedes infection and, ultimately, replication. Despite the conserved structures of the glycans involved in docking, they are still considered "undruggable", meaning these glycans are beyond the scope of conventional pharmacological strategies. Recent advances in the development of synthetic carbohydrate receptors (SCRs), small molecules that bind carbohydrates, could bring carbohydrate-receptor interactions within the purview of druggable targets. Here we discuss the role of carbohydrate-receptor interactions in viral infection, the evolution of SCRs, and recent results demonstrating their ability to prevent viral infections in vitro. Common SCR design strategies based on boronic ester formation, metal chelation, and noncovalent interactions are discussed. The benefits of incorporating the idiosyncrasies of natural glycan-binding proteins-including flexibility, cooperativity, and multivalency-into SCR design to achieve nonglucosidic specificity are shown. These studies into SCR design and binding could lead to new strategies for mitigating the grave threat to human health posed by enveloped viruses, which are heavily glycosylated viroids that are the cause of some of the most pressing and untreatable diseases, including HIV, Dengue, Zika, influenza, and SARS-CoV-2.


Asunto(s)
Antivirales/química , Diseño de Fármacos , Receptores Artificiales/química , Receptores Virales/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Acoplamiento Viral/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/farmacología , COVID-19/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Chlorocebus aethiops , Humanos , Simulación del Acoplamiento Molecular , Receptores Artificiales/síntesis química , Receptores Virales/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Vero , Virosis/tratamiento farmacológico , Virosis/metabolismo , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/metabolismo , Tratamiento Farmacológico de COVID-19
5.
Comput Biol Chem ; 89: 107372, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-743928

RESUMEN

The SARS-CoV-2 virus is causing COVID-19 resulting in an ongoing pandemic with serious health, social, and economic implications. Much research is focused in repurposing or identifying new small molecules which may interact with viral or host-cell molecular targets. An important SARS-CoV-2 target is the main protease (Mpro), and the peptidomimetic α-ketoamides represent prototypical experimental inhibitors. The protease is characterised by the dimerization of two monomers each which contains the catalytic dyad defined by Cys145 and His41 residues (active site). Dimerization yields the functional homodimer. Here, our aim was to investigate small molecules, including lopinavir and ritonavir, α-ketoamide 13b, and ebselen, for their ability to interact with the Mpro. The sirtuin 1 agonist SRT1720 was also used in our analyses. Blind docking to each monomer individually indicated preferential binding of the ligands in the active site. Site-mapping of the dimeric protease indicated a highly reactive pocket in the dimerization region at the domain III apex. Blind docking consistently indicated a strong preference of ligand binding in domain III, away from the active site. Molecular dynamics simulations indicated that ligands docked both to the active site and in the dimerization region at the apex, formed relatively stable interactions. Overall, our findings do not obviate the superior potency with respect to inhibition of protease activity of covalently-linked inhibitors such as α-ketoamide 13b in the Mpro active site. Nevertheless, along with those from others, our findings highlight the importance of further characterisation of the Mpro active site and any potential allosteric sites.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Multimerización de Proteína/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Amidas/síntesis química , Amidas/química , Amidas/farmacología , Antivirales/síntesis química , Antivirales/química , Azoles/síntesis química , Azoles/química , Azoles/farmacología , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasa de Coronavirus/síntesis química , Inhibidores de Proteasa de Coronavirus/química , Humanos , Isoindoles , Ligandos , Lopinavir/síntesis química , Lopinavir/química , Lopinavir/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Compuestos de Organoselenio/síntesis química , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Ritonavir/síntesis química , Ritonavir/química , Ritonavir/farmacología , SARS-CoV-2/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA